
CZECH REPUBLIC

EDA for the Real World

Author
Sandro Volpicella

From Architecture to Implementation

Date
2025-04-29

whoami?

• Fullstack Software Engineer (AWS, Serverless) from Munich 🇩🇪
• Built up the whole EDA for hashnode with 1m+ events per month
• AWS Community Builder 🧡
• Author: AWS Fundamentals & CloudWatch Book

Author

Sandro Volpicella
@sandro_vol

Theory & Architecture

1. What is EDA?
2. EDA on AWS
3. EventBridge Introduction
4. Envelope
5. Subscription pattern

Hands-On & TypeScript

6. Validating events
7. Errors & Retries
8. Archive & Replay
9. Idempotency
10. Testing
11. More & Resources

Example Application - Blog

All examples will be on a blogging platform

Our blogging platform can:
- people can sign up
- create blogs
- read blogs
- publish blog post

Think of hashnode / medium / dev.to

What is EDA?

What is EDA?

Ø Systems react to events instead of being told what to do

Ø Technical Goal: Decoupling of your system

Ø Real-World Goal: Feature velocity, Resilience, Reliability

Function-Driven Event-Driven

1st issue: Time

2nd issue: Error handling

Function-Driven Event-Driven

How to EDA on AWS?

How to EDA on AWS?

How to EDA on AWS? - SQS

How to EDA on AWS? - SQS
✅ Async
✅ Better error handling

❌ One queue for one task
❌ Coupling

How to EDA on AWS? - SNS

v

How to EDA on AWS? - SNS
✅ Coupling: Decoupled Producers
from Consumers
✅ Publish/Subscribe: Consumers
easily subscribe/unsubscribe from
topics

❌ Routing via filtering
❌ Archive & Replay: Saving all events & replaying
them

EventBridge Introduction

EventBridge Introduction

EventBridge Introduction

Event Envelope

Event Envelope

How does an event look like?

Event Envelope

How does an event look like?

1. detail-type: “Type of event”
2. detail: data

Event Envelope

Why?

• Idempotency – Deduplicate your events
• Versioning – Schema will evolve, handle versions
• Observability – Trace events through your system

Event Envelope – Two approaches

1. Metadata / Data
2. CloudEvents

Event Envelope – Metadata / Data

Metadata – Common fields across all events
• id
• user
• date

Data – Unique for this event
• post
• blog

Required Fields
• id
• source
• type

Optional Fields – Unique for this event
• data
• time
• correlationid

Event Envelope – CloudEvents(.io)

Subscription Pattern

5 targets per rule

5 targets per rule

5 targets per rule

Multiple Targets per Rule

Multiple Targets per Rule

Subscription Pattern

“Hands-On” Agenda

• Event validation
• Idempotency
• Error handling
• Testing

Middlewares!

Middy.js

Middy.js

Middy.js

Validation

Three things we need to validate incoming events

1. Event
2. Schema
3. Middleware

Three things we need to validate incoming events

1. Event
2. Schema
3. Middleware

Three things we need to validate incoming events

1. Event
2. Schema
3. Middleware

Retry & Error Handling

Server Errors

Retry & Errors

Retry & Errors – Lambda Sync vs. Async

Sync:
• Receiver waits for response
• Caller controls error handling
• API / Blocking

Async:
• Fire & Forget
• Consumer handles errors
• SQS & Lambda in one
• Retries
• Destinations

Archive & Replay

> “Everything fails, all the time.”
Werner Vogels – CTO Amazon

*there is no AWS slide without this quote

Replay from 10:10:00 - 10:20:00

Ø How do you know you haven't handled some events already?
Ø This is where idempotency comes in

Idempotency
(at-least-once processing / deduplication)

Ø This is NOT idempotency -> It is deduplication

Ø Amazing Team @AWS: Powertools TypeScript (props to Andrea Amorosi)
@aws-lambda-powertools/idempotency

Replay from 10:10:00 - 10:20:00
Ø How do you know you haven't handled some events already?
Ø This is where idempotency comes in
Ø Events will be deduplicated

Testing

Unit Integration

Integration
1. Event Reaches Bus -> Bus forwards to target
2. Target integration with other systems

More

• Create a rule log all group
• Use a log formatter across all your events
• Share your events in a npm package or monorepo
• Mock failures
• Use max concurrency
• Use as many alerts as needed and as few as possible (rather start too low than too high imo)
• Get started with it
• Idempotency without a Lambda in between is hard
• Not everything needs to be idempotent
• Think about full events vs. notification events (what is more expensive)
• Rather make the async consumer slow than the API – user performance is everything

Resources

• https://lumigo.io/blog/5-reasons-why-you-should-use-eventbridge-instead-of-sns/
• https://www.reddit.com/r/aws/comments/ystxxn/confused_about_eventbridge_5_targets_per_rule/
• https://www.youtube.com/watch?v=RoKAEzdcr7k
• https://engineering.hashnode.com/how-to-build-event-driven-architecture-on-aws
• https://www.youtube.com/watch?v=U5GZNt0iMZY&t=2346s
• https://www.youtube.com/watch?v=Wk0FoXTUEjo
• https://serverlessfirst.com/eventbridge-testing-guide/
• https://notes.paulswail.com/public/AWS

Author

Sandro Volpicella
@sandro_vol

- Feedback appreciated!
- Freelance available

